In this paper, we present a modified Xception architecture, the NEXcepTion network. Our network has significantly better performance than the original Xception, achieving top-1 accuracy of 81.5% on the ImageNet validation dataset (an improvement of 2.5%) as well as a 28% higher throughput. Another variant of our model, NEXcepTion-TP, reaches 81.8% top-1 accuracy, similar to ConvNeXt (82.1%), while having a 27% higher throughput. Our model is the result of applying improved training procedures and new design decisions combined with an application of Neural Architecture Search (NAS) on a smaller dataset. These findings call for revisiting older architectures and reassessing their potential when combined with the latest enhancements.
translated by 谷歌翻译
This paper proposes the use of an event camera as a component of a vision system that enables counting of fast-moving objects - in this case, falling corn grains. These type of cameras transmit information about the change in brightness of individual pixels and are characterised by low latency, no motion blur, correct operation in different lighting conditions, as well as very low power consumption. The proposed counting algorithm processes events in real time. The operation of the solution was demonstrated on a stand consisting of a chute with a vibrating feeder, which allowed the number of grains falling to be adjusted. The objective of the control system with a PID controller was to maintain a constant average number of falling objects. The proposed solution was subjected to a series of tests to determine the correctness of the developed method operation. On their basis, the validity of using an event camera to count small, fast-moving objects and the associated wide range of potential industrial applications can be confirmed.
translated by 谷歌翻译
The proliferation of deep learning techniques led to a wide range of advanced analytics applications in important business areas such as predictive maintenance or product recommendation. However, as the effectiveness of advanced analytics naturally depends on the availability of sufficient data, an organization's ability to exploit the benefits might be restricted by limited data or likewise data access. These challenges could force organizations to spend substantial amounts of money on data, accept constrained analytics capacities, or even turn into a showstopper for analytics projects. Against this backdrop, recent advances in deep learning to generate synthetic data may help to overcome these barriers. Despite its great potential, however, synthetic data are rarely employed. Therefore, we present a taxonomy highlighting the various facets of deploying synthetic data for advanced analytics systems. Furthermore, we identify typical application scenarios for synthetic data to assess the current state of adoption and thereby unveil missed opportunities to pave the way for further research.
translated by 谷歌翻译
Tasks critical to enterprise profitability, such as customer churn prediction, fraudulent account detection or customer lifetime value estimation, are often tackled by models trained on features engineered from customer data in tabular format. Application-specific feature engineering adds development, operationalization and maintenance costs over time. Recent advances in representation learning present an opportunity to simplify and generalize feature engineering across applications. When applying these advancements to tabular data researchers deal with data heterogeneity, variations in customer engagement history or the sheer volume of enterprise datasets. In this paper, we propose a novel approach to encode tabular data containing customer transactions, purchase history and other interactions into a generic representation of a customer's association with the business. We then evaluate these embeddings as features to train multiple models spanning a variety of applications. CASPR, Customer Activity Sequence-based Prediction and Representation, applies Transformer architecture to encode activity sequences to improve model performance and avoid bespoke feature engineering across applications. Our experiments at scale validate CASPR for both small and large enterprise applications.
translated by 谷歌翻译
神经形态视觉是一个快速增长的领域,在自动驾驶汽车的感知系统中有许多应用。不幸的是,由于传感器的工作原理,事件流中有很大的噪声。在本文中,我们提出了一种基于IIR滤波器矩阵的新算法,用于过滤此类噪声和硬件体系结构,该算法允许使用SOC FPGA加速。我们的方法具有非常好的过滤效率,无法相关噪声 - 删除了超过99%的嘈杂事件。已经对几个事件数据集进行了测试,并增加了随机噪声。我们设计了硬件体系结构,以减少FPGA内部BRAM资源的利用。这使得每秒的潜伏期非常低,最多可达3858元MERP的事件。在模拟和Xilinx Zynx Zynx Ultrascale+ MPSOC+ MPSOC芯片上,拟议的硬件体系结构在Mercury+ XU9模块上进行了验证。
translated by 谷歌翻译